Field
A field is a set S with two operations called addition \({\oplus: S\times S \rightarrow S}\) and multiplication \({\odot: S\times S \rightarrow S}\) which satisfies the following requirements:
- associativity
$$\forall_{a, b, c \in S}: (a \odot b) \odot c = a \odot ( b \odot c)$$
$$\forall_{a, b, c \in S}: (a \oplus b) \oplus c = a \oplus ( b \oplus c)$$
- commutativity …